数据集准备
数据采集流程
我们形成并设计了一个数据采集流程,用于提取与音乐音频样本相关的有意义的语义字幕。
数据集整理
我们设计了一个学术规模的数据集,可用于训练或微调多模态音乐表征学习模型。
框架
The guiding principles of our dataset include:
- extracting rich semantic information
- limiting the possibility hallucination
- formatting the final music captions to contain a format that is compatible with state-of-the-art (SOTA) generative and retrieval based models.
1: 2: posts = Load_Entire_Thread( 3: filtered = Length_and_Mod_Filter(posts) 4: sa_pairs, caption_extracts = 5: descriptive, atmospheric, situational, contextual, metadata = caption_extracts 6: song_ids = Spotify_Metadata(sa_pairs) 7: sa_pairs = Hallucination_Check1(sa_pairs,fltrd) 8: mp3s = Spotify_Audio(song_ids) 9: final_summaries = Summarize(sa_pairs,caption_extracts, mp3s) 10: filtered_captions = Hallucination_Check2(caption_extracts, final_captions, |

Preview
Properties of the Dataset
Total Size | # Unique Songs | # Unique Artists | # Posts per Song | #Songs per Post | # Genres per Song |
---|---|---|---|---|---|
42,426 | 12,073 | 4.496 | 3.51 | 11.65 | 2.61 |
Number of Unique Entries
Genres Most Represented in Dataset

Preview
Popularity Distribution in Dataset

Preview
Count of Raw Text in Dataset

Preview
Caption

Preview
Genre Frequency in Dataset (log scale)

Preview
Enter Caption

Preview